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Abstract The characterization of small molecules requires
identification and evaluation of several predictive parame-
ters, when selecting compounds for pharmacological
applications and/or determining their toxicity. A number
of them are correlated with the compound interaction with
biological membranes and/or capacity to cross them. The
knowledge of the extent of adsorption, partition coefficient
and permeability along with the compound ability to alter
membrane properties are critical for such studies. Lipid
bilayers are frequently used as the adequate experimental
models of a biological membrane despite their simple
structure and a limited number of components. A signifi-
cant number of the biologically relevant lipid bilayer
properties are related to its electrostatics. Three electrostatic
potentials were defined for the lipid bilayer; the intrinsic or
induced surface electrostatic potential, the dipole potential
and the membrane potential. Each of them was measured
with dedicated methodologies. The complex measurement
protocols and technically demanding instrumentation made
the development of efficient HTS approaches for complete
characterization of membrane electrostatics practically
impossible. However, the rapid development of fluores-

cence techniques accompanied by rapid growth in diversity
and number of dedicated fluorescent probes enabled
characterization of lipid bilayer electrostatics in a moder-
ately simple manner. Technically advanced, compact and
automated workstations, capable of measuring practically
all fluorescence parameters, are now available. Therefore,
the proper selection of fluorescent probes with measuring
procedures can be designed to evaluate drug candidates in
context of their ability to alter membrane electrostatics. In
the paper we present a critical review of available
fluorescence methods, useful for the membrane electrostat-
ics evaluation and discuss the feasibility of their adaptation
to HTS procedures. The significance of the presented
methodology is even greater considering the rapid growth
of advanced drug formulations, where electrostatics is an
important parameter for production processes and pharma-
cokinetics of the product. Finally, the potential of the
membrane electrostatics to emerge as a viable pharmaco-
logical target is indicated and fluorescence techniques
capable to evaluate this potential are presented.

Keywords Fluorescence .Membrane electrostatic
potential . HTS . Lipid bilayer

Introduction

Electrostatic interactions are universally present in biolog-
ical systems [1, 2]. Practically, all biological macromole-
cules pose non-uniform charge distribution, which affects
their inter-and intra-molecular arrangement and stability
whereas charged surfaces control spatial distribution of
charged compounds within the various cellular compart-
ments [3–6]. In addition, all biological processes take place
in the complex solutions, which may affect electrostatic
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interactions by screening charges and altering local water
activity [6–9]. The contribution of electrostatic interactions
in receptor-ligand association is accounted for in binding
assays, but the effect of electrostatics associated with
supramolecular structures requires different approaches.
The charged surfaces alter concentrations of adjacent
solutes, association, trans-membrane transport, trans-
membrane potential generation/dissipation and functioning
of the membrane-associated proteins [10–14]. Due to the
complexity of the biological membranes, experimental
studies were performed on various models, which were
designed to mimic important biological membrane proper-
ties. Among them the lipid bilayer is the most popular. Its
wide application results from the assumption that the lipid
fraction of the biological membrane determines its electrical
and barrier properties [15, 16]. Even in such simplified
model, the spatial charge distribution together with charge
fluxes across the membrane results in the complex
electrostatic potential profile as schematically illustrated
on Fig. 1 [3, 5, 15, 17]. This potential profile depends on
both, the intrinsic membrane charge distribution (types of
lipids, protein and carbohydrates) and the overall environ-
mental context (electrochemical potential differences, ionic
strength, ion types and pH) [18, 19].

Historically, three membrane potentials were defined; the
trans-membrane potential difference (ΔY), the dipole
potential (Yd) and the surface potential (Ys) [2, 3, 5, 15,
17, 20]. In reality, the electric field across the lipid bilayer
has a continuous profile without clear distinction between
the three potentials. However, specific potentials may be
assigned to different membrane regions, i.e. the surface

potential in the aqueous phase adjacent to the lipid bilayer
surface, the dipole potential in the lipid bilayer interface
and the trans-membrane potential in the lipid bilayer
hydrophobic core (see Fig. 1).

The trans-membrane potential difference (ΔY) is defined as
the potential difference, generated by the transfer of charges,
between two water compartments separated by the mem-
brane. It is a critical parameter assigned to cell membranes
and is frequently used as an indicator of cellular metabolic
activity [19, 21]. It is also important for characterization of
the cellular processes, such as mitochondria initiated apopto-
sis [22, 23]. The surface electrostatic potential (Ys) is
generated by charged lipid residues and/or charged com-
pounds adsorbed within the membrane interface. It is defined
as the potential in the aqueous phase adjacent to the
membrane surface, which depends on the surface charge
density and the ionic composition of the aqueous phase (for a
review see [3, 5, 24]). In biological membranes, this potential
is of the order of few tens of mV and may affect the surface
related processes including conductance of ion channels [25–
29], structure of membrane associated proteins [2, 30–33],
binding of charged amphiphilic molecules [34] and sorting of
charged lipids on the membrane surface [13]. The surface
potential changes induced by adsorbed charged molecules
affect the lipid head-group organization as shown for charged
amphiphiles [35, 36] and some general anesthetics [37–39].

The surface membrane potential (Ys) determines the
distribution of ions at the membrane interface creating
specific local ionic and pH environment. The ion concen-
tration at the charged surface is described by the Boltzmann
equation [3, 5]:

Cs ¼ CB exp
�ze<S

kT

� �
; ð1Þ

where CB and Cs are an ion concentrations at the membrane
surface and in the bulk, respectively, e stands for
elementary charge, k for Boltzmann constant, T for absolute
temperature and z for ion valance. The surface electrostatic
potential can be correlated with the surface charge density
via the combination of the Poisson equation, which relates
the electrical field vector to the surface charge density (σ),
the Boltzmann equation and suitable boundary conditions,
yielding:

sinh
e<

kT

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8N"r"0kT
p s

ffiffiffiffiffiffiffiffiffi
CNB

p
; ð2Þ

where N is the Avogadro number and CNB the effective
bulk ion concentration. This equation shows that any
change in the ion concentration (or its valance) in the bulk
phase results in change of the surface potential even when
the surface charge density remains constant. The other
important effect of the surface membrane charge is an

Fig. 1 The electrostatic potential profile across the lipid bilayer with
the locations of fluorescent probes used to determine surface potential
(area I), dipole potential (area II) and membrane potential difference
(area III)

1140 J Fluoresc (2010) 20:1139–1157



alteration of the local pH, which affects the protonation of
the surface located residues. This important effect is usually
represented by the combination of Boltzman relation in a
logarithmic form and the Henderson-Hasselbalch equation:

log
Hþ

S

Hþ
B

� �
¼ 0:059<; ð3Þ

pKS ¼ pKB �<; ð4Þ

where Hþ
S is the concentration of protons at the surface and

Hþ
B in the bulk phase. However, a certain amount of caution

is needed when the effect of ions on surface potential is
considered. A number of recent experiments and computer
simulations show that the value of ion charge is not the
only determinant of its screening potency but also the ion
size and level of its hydration [40].

The dipole potential drops across a small distance within
the head-group region of the membrane, therefore the
electric field strength produced is large reaching 108–109

Vm−1. In comparison, a total membrane potential differ-
ence, ΔY, of 100 mVacross a membrane of thickness 4 nm
would result in the field strength across the whole
membrane of the order of 107 Vm−1. Unlike the surface
potential, the dipole potential (Yd) is independent of the
ionic strength since it is the electrical potential within
phospholipid membrane itself. It arises from the alignment
of water dipoles adjacent to the membrane, ions associated
with the interface, the polar head groups residual charges
(from P-O-N dipoles and from the P-O bonds of phosphate
groups), the ester bonds between alkyl chains and the lipid
glycerol backbone [17, 40–52]. The estimates of the
absolute Yd values for phosphatidylcholine bilayers vary
from ≈ 280 mV, as experimentally determined from the
penetration rates of hydrophobic ions, to ≈ 500 mV, as
computed from molecular dynamic simulation data and it is
always positive in the membrane interior [48, 53]. As a
result, the difference in the penetration rates between
positively and negatively charged, structurally similar,
hydrophobic ions reaches up to 6 orders of magnitude [2,
54–58]. The dipole potential is thus likely to have a great
significance in affecting passive transport, controlling the
conformation of ion-translocating membrane proteins and
regulating of surface associated enzyme functions. It has
been shown for example, that it affects the conductance of
the gramicidin channel [59, 60], membrane adsorption,
folding and insertion of amphiphilic peptides and proteins
[61, 62], phospholipase A2 activity [63], mitochondria
functioning by influencing redox reactions kinetics [64–
66] and the Na,K-ATPase activity [67]. It may also affect
processes assigned to lipids themselves, including skin
permeability [62], membrane fusion [68], action of anes-

thetics [50–52], the modulation of molecule-membrane
interactions in lipid rafts with possible effects on cell
signaling [62, 69, 70] and the membrane salvation [71, 72].

Membranes are structural elements of cells which
participate in practically all their physiological events,
including the energy transformation, the control of fluxes
between cell inner space and its environment and informa-
tion sorting and transduction [73]. Therefore, understanding
the effect of biologically active compounds or aggregates
on membrane structure and functioning is important for
applied life sciences [74–78].

When developing and testing biologically active com-
pounds or supramolecular structures, it is necessary to
determine their effect on crucial parameters of biological
system. In addition, if the compound is intended to become
a drug than it is important to establish the effect of
biological structures on the compound spatial and temporal
distribution within the tissue [78–81]. These effects will
depend on the compound ability to interact with various
cellular structures on its way to the molecular target. The
compound physiological activity can be correlated with a
set of parameters, which can be determined using dedicated
model systems [82, 83]. Membrane electrostatic potentials
are rarely used for that purpose because there have been no
convenient, reliable and quantitative experimental protocols
available and because biological membranes have not been
considered as a viable pharmacological targets [84]. This
has been changing recently due to the rapid development of
the fluorescent spectroscopic and imaging techniques and
subsequent identification of intracellular pharmacological
targets [1, 74, 85–105].

In order to study the effect of a compound and/or an
aggregate on electrical properties of biological systems a
suitable experimental models were developed including
molecular monolayers, model lipid membranes with or
without reconstituted proteins, extracted biological mem-
branes or whole cells [16, 73, 106–108]. Moreover, in order
to monitor the electrostatic potential the various detection
techniques were developed, as well. Historically, electro-
chemical, spectroscopic and electrophysiological methods
have been widely used [21, 39]. Their applications were
limited to the specific model systems and required complex
instrumentation. Fluorescence techniques, in the course of
the last two decades, have been shown to be extremely
useful in variety of applications in biological, medical and
life sciences [90, 109]. The potential for miniaturization,
rapid data acquisition and continuously increasing number
of probes and labeling protocols makes fluorescence
techniques a leading experimental approach in life sciences
[110, 111]. In this review we present, available fluorescence
techniques providing information on membrane electrostat-
ic potential and their capability to be adapted for highly
efficient screening methodologies.
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Determination of the surface electrostatic potential

The membrane surface electrostatic potential can be
determined by measuring the zeta potential of a particulate
suspension. However, only the overall charge can be
calculated without accounting for its spatial distribution
and/or screening by a variety of surface modifications and/
or shape alterations. For example, the zeta potential of
erythrocytes is negative, due to the charges associated with
the glycocalyx, whereas the outer layer of the lipid bilayer
is devoid of electrostatic charges [73]. In order to address
this, dedicated, appropriately localized fluorescent probes
were developed. They are capable to probe the local
electrostatic properties at various locations within the
aggregate. There are three basic fluorescence approaches
to study the surface electrostatics in bio-membranes and
their models;

1) The fluorescent probe re-location from the aqueous
phase onto the membrane surface under the influence
of the local electric fields accompanied by fluorescence
change;

2) The fluorescence change of the surface located dye
caused by ions dissolved in the adjacent aqueous
phase;

3) The direct response of a ground and excited
electronic states to the local electric field, resulting
in the shifts of an absorption and/or an emission
spectra (electrochromism).

There is a number of charged amphiphilic fluorescent
probes which have moderate partition coefficient and
fluorescence properties dependent on the polarity of the
environment, preferentially with high quantum efficiency in
low dielectric media. Examples of such probes are
presented on Fig. 2.

When liposome suspension is labeled with such probe its
fluorescence (F) will originate predominantly from the
probe fraction located in the membrane, i.e.

F ¼ ¼ 0 for Caq

� f Cmemð Þ for Cmem

�
ð5Þ

where Caq and Cmem are the probe concentrations in the
aqueous phase and the lipid bilayer, respectively. The
apparent partition coefficient of the probe can be used to
determine its surface concentration, modulated by the
electrostatic potential as proposed by Eisenberg et al.
[112]. Specifically, assuming that the intrinsic partition
coefficient does not depend on the amount of surface
electrostatic charge, one can write:

Kapp ¼ Cmem

Csurf
aq

¼ Cmem

Cbulk
aq exp �ze<SðzÞ

kT

� 	 ¼ K

exp �ze<SðzÞ
kT

� 	 ;

ð6Þ
where Kapp is the ,experimentally determined, apparent
partition coefficient for the charged membrane, whereas K
is the intrinsic partition coefficient for a reference mem-
brane without surface charges, i.e. formed from phospha-
tidylcholine. Since membrane associated fluorescent probes
are practically the only source of fluorescence, the above
equation can be rewritten as:

Fch arg ed ¼ Cmem

Csurf
aq

¼ Cmem

Cbulk
aq exp �ze<SðzÞ

kT

� 	

¼ Fneutral

exp �ze<SðzÞ
kT

� 	 ; ð7Þ

where Fcharged and Fneutral represent fluorescence intensi-
ties obtained when the dye is exposed to the charged or

Fig. 2 Examples of charged
fluorescent probes used to mea-
sure the surface electrostatic
potential (a) Negatively charged
2-(hexadecylamino)naphthalene-
6-sulfonate (HNS), (b) 1-
anilinonaphthalene-8-sulfonic
acid (1,8-ANS), (c) 2-p-
toluidinylnaphthalene-6-sulfonate
(TNS), (d) positively charged
N-(β-aminoethyl)sulfonoamido
derivative of TNS (TNAES)

1142 J Fluoresc (2010) 20:1139–1157



neutral membranes, respectively. This approach was used
to determine the experimental limitations of Gouy—
Chapman theory. Specifically, two chemically similar,
but oppositely charged fluorescent probes (Fig. 2) were
used to determine the surface electrostatic potentials of
lipid bilayers with various amount and types of phosphoi-
nositides. It was established that when PIP2 was present in
the membrane the electrostatic potential determined with
cationic probe did not correspond to that obtained with
anionic probe. This result was interpreted as a surface
electrostatic potential non-uniformity in the presence of
PIP2 [4], whereas when lipids with lower quantities of
negative charges were used such effect was not observed.
Using this method a care has to be taken to ensure the
surface “quality”, i.e. the lipid bilayer has to be far from
any phase transitions [113].

The other method available is the quenching of a surface
located fluorophore. The local charged quencher concen-
tration depends on the local electrostatic potential according
to the Boltzman relation:

Cs ¼ CB exp
�ze<SðzÞ

kT

� �
; ð8Þ

where the local ion concentration (CS) depends on the bulk
concentration (CB) and local electrostatic potential, Ys(z).
Therefore, the fluorescent probe at a certain location is
quenched with the efficiency correlated with a value of the
local electrostatic potential. Specifically, the dynamic
quenching is described by the Stern-Volmer Eq. 9 [114];

F0

F
¼ 1þ KSV Q½ �local; ð9Þ

Q½ �local ¼ Q½ �bulkl exp
�ze<localðzÞ

kT

� �
; ð10Þ

where F0 and F are fluorescence intensities in the absence and
presence of a quencher, respectively. KSV is the Stern-Volmer
constant and [Q]local the local quencher concentration.

The graphical representation of the Stern-Volmer equation
and the effect of a surface charge is illustrated on Fig. 3.

The determination of the electrostatic potential, in this
case, consists of two steps; the measurement of an intrinsic
quenching constant using a neutral model membrane (or
neutral quencher) and the determination of apparent
quenching constant when surface charges are present. The
application of neutral quencher for the intrinsic quenching
constant determination is preferred since in this case there is
no need for an additional experiment to evaluate the effect
of the surface charge on the dye location [4, 114, 115].

Since the value of the electrostatic potential depends
on the probe location the proper dye positioning is

critical [5]. To ensure the correct probe location its
physicochemical properties need to be selected carefully;
otherwise the intended effect may not be achieved. For
example, the attachment of NBD dye to the hydrocarbon
chain of lipid does not result in expected fluorophore
location. Amphiphilic NBD molecule has strong prefer-
ence for the lipid bilayer interface and as a consequence it
is positioned there despite the place of its attachment
[116]. Therefore, it is a good practice to determine the
fluorophore location in the independent experiment [117,
118]. The electrostatic potential determination using the
dynamic quenching method was creatively used by
McLaughlin group [4, 115]. The objective was to
determine the electrostatic potential profile for various
charged lipid bilayers [4, 119, 120]. For that purpose
fluorescein located at 0 nm, 1 nm and 2 nm from the
membrane surface,were used. To achieve that hydrophilic
fluorescent moieties were attached to carefully selected
lipid carriers; phosphatidylethanolamine with covalently
attached fluorescein to the lipid headgroup (lipid bilayer
surface - 0 nm); ganglioside GM1 with fluorophores
attached to sialic acid (1 nm from the lipid bilayer surface)
and at the terminal glucose (2 nm from the lipid bilayer
surface) as illustrated on Fig. 4 [4, 5]. Using this approach
it was possible to obtain the electrostatic potential profile
for charged lipid bilayers [4, 119].

A similar strategy was proposed by Kraayenhof et al.
[121, 122]. In this approach the combination of charged
group and hydrocarbon chain defines the position of the 7-
hydroxycoumarin probe with respect to the membrane
surface. A short spacer between the quaternary ammonium
group and the fluorophore was used to position the
fluorescent group at a certain distance from the membrane
surface. The usefulness of this strategy was demonstrated
by measuring the fluorescent properties of a series of such

Fig. 3 The graphical representation of the Stern-Volmer equation for
the quenching of surface located fluorophore. The solid line represents
the case when the fluorophore is quenched with neutral water soluble
quencher whereas the broken lines show the quenching of the
fluorophore by counter-ionic and co-ionic quenchers
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analogs in charged membranes and by monitoring the
surface potential changes during metabolism in yeast cells
[121]. Some of such probes were used to study the
differential effects of monovalent cations on membrane
surface properties [123]. Like in the previous example, the
measured fluorescence properties of the probes were well
correlated with the surface potential calculated from the
Gouy-Chapman-Stern theory [121, 123]. (Figure 4)

The electrostatic potential in the aqueous phase adjacent
to charged surface can also be measured by the extent of
fluorescent probe protonation [124]. Due to its polarity,
fluorescein attached to the lipid polar head-group stays
above the membrane surface probing the water phase in its
immediate vicinity. Fluorescein quantum yield depends on
its protonation, being non-fluorescent in low pH. Therefore,
the fluorescence intensity of fluorescein may be correlated

Fig. 4 The chemical structure of (a) ganglioside GM1 with indicated locations of fluorescence dyes and. (b) surface located fluorophore of N-
(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanoloamine, triethylammonium salt (Fluorescein DHPE) dye
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with the surface electrostatic potential of the membrane.
Specifically, at a charged surface the apparent pKobs of the
surface located fluorescent probe can be correlated with the
local electrostatic potential [124]:

pKobs ¼ pK0 � F<S

2:3kT
; ð11Þ

where pK0 is the intrinsic pK when there are no surface
charges present. The number has to be determined in the
independent experiment under similar conditions. The
calibration of the pKobs versus surface potential, Ys, can
be done using, for example, POPC lipid bilayer as the
neutral phospholipid surface and mixtures of POPC/
DOPG with increasing fraction of charged lipid. Care
needs to be taken to ensure that the charged component is
randomly distributed on the lipid surface in order to avoid
erroneous results [113]. Values of the fluorescent probe
pKobs are usually determined by fitting the fluorescence
intensities as a function of the aqueous pH to the
following formula:

pKobs ¼ pH � log
a

1� a

� 	
; ð12Þ

with α = (F – FAH+)/(FA – FAH+), where F is the fluorescence
intensity at the band maximum of the conjugate acid-
base forms at the particulate pH being examined. FAH+
and FA are the fluorescence intensities at the same
wavelength at pH values such that only AH+ or A exists.
Similar approach was used to detect adsorption of charged
molecules onto the lipid surface [125–128]. The lipid
labeled with fluorescein has been recently employed as the
detector in liposome based biosensor to determine the
permeability coefficient of charged biologically active
compounds [129–131].

The third and least frequently used approach for the
surface potential determination takes advantage of the
electrochromic effect, namely the electric field induced
changes in electron or proton distribution within the
fluorescence probe itself [109, 132–134]. However, appli-
cation of such dyes has a number of serious disadvantages.
Electrochromic dyes are usually large molecules; therefore
it is impossible to determine their precise location within
the lipid bilayer interface and consequently obtained value
of the surface electrostatic potential cannot be precisely
assigned to the specific location. Since those dyes are
amphiphilic or hydrophobic it is impossible to determine
the value of the electrostatic potential further than the
membrane interface.

Using the fluorescent dyes to evaluate the surface
electrostatic potential fluorophore size and/or charge has
to be accounted for since they can modify the local lipid
surface properties including the electrostatic potential by

itself [135–137]. When measuring the surface electrostatic
potential in biological membranes a number of intrinsic
difficulties needs to be overcome, including their non-
homogenous lateral organization and transversal asymme-
try [138–147]. There are numerous problems with the
labeling protocols of biological membranes due to the
limited solubility of the dye, inhomogeneous distribution
within the biological system and potential dye specificity
towards membrane components. All those difficulties are
irrelevant when not the electrostatic surface potential but
the presence of charged lipids in certain location is to be
determined; this was exemplified by fluorescent annexin-V
conjugates used for studying the externalization of phospha-
tidylserine, one of the earliest indicators of apoptosis [148,
149]. The measured difference in fluorescence intensities of
annexin-V-phosphatidylserine complexes between apoptotic
and non-apoptotic cells can be detected by flow cytometry.
The fluorescence signal is elevated by about 100-fold as
illustrated by studies on a hybridoma cell lines with the
annexin-V assay, used to study apoptosis and its suppression
by bcl-2 over-expression [150, 151].

Determination of the dipole potential

The direct measurements of the dipole potential were
possible by the application of phospholipid monolayers
on air–water or water-mercury interfaces using ionizing
electrodes. The value of the dipole potential for phos-
phatidylcholine was determined to be about 450 mV
[37–39, 65]. However, results from monolayers disagree
quantitatively with the dipole potential values obtained on
the bilayer models using other methods, i.e. EPR [152] or
NMR [43]. This causes serious difficulties with the
calibration of the fluorescence methods for the dipole
potential determination [153].

When a dye binds to the lipid membrane with its
chromophore in the lipid headgroup region it is sensitive to
the local electric field originating predominantly from the
dipole potential as exemplified by styryl dyes (Fig. 5), which
were primarily designed as fast-responding probes for trans-
membrane potential determination [48, 132, 154, 155].

There are three effects of the intra-membrane electric
field on the membrane-bound dye molecules that could be
used to quantify the dipole potential:

1. The pKa of membrane-bound dye modification,
2. The fluorescence excitation and/or emission spectrum

of membrane-bound dye shift,
3. The fluorophore relocation.

It has been shown that the pKa of membrane-bound
N-(4-Sulfobutyl)-4-(4-p-(dipentylamino)phenyl)butadienyl)-
pyridinium inner salt (RH421) and 4-(2-(6-(dioctylamino)-2-
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naphthalenyl)ethenyl)-1-(3-sulfopropyl)-pyridinium inner salt
(di-8-ANEPPS) depends on the structure of lipid used (i.e.,
chain length and saturation) [156, 157], when the dye is
incorporated into dimyristoylphosphatidylcholine (DMPC)
and dioleoylphosphatidylcholine (DOPC) membranes its pKa

is 3.1±0.1 and 4.1±0.1, respectively. The pKa of such dyes
can be determined by the large change in their absorbance
(excitation) spectrum caused by the dye protonation. Although
pKa shift could be used to quantify the dipole potential, there
are number of practical disadvantages of such method. It
involves pH titrations down to the low, strongly acidic, pH
values, i.e. at least pH 3 for RH421 and even lower for di-8-
ANEPPS [156, 157]. Such titrations cannot be performed to
pH values below 1.8 because of the protonation of the lipid
phosphate group, resulting in the phase transition of the lipid
aggregate [158–160]. Therefore, a method that involves
measurements at a constant and physiological pH is preferable.

The convenient method can be based on the shift of the
excitation and/or emission spectrum of the membrane-bound
dye. Such application of di-8-ANEPPS dye was first proposed
by Gross et al. [48], and shortly afterwards by Zouni et al.
[156]. The binding of the dipolar species to the lipid bilayer,
made of the neutral phosphatidylcholine, causes significant
spectral shift of the dyes [48, 157] indicating their sensitivity
to the local dipole potential. The response is based on the
electrochromic effect (Stark effect) [134]. The effect is
visualized by the shifts of the absorption and emission
bands, caused by the interaction of the electric field (E) with
the ground and excited states of chromophore dipole
moments $~m, as expressed by the equation [90, 134, 161]:

hΔnobs ¼ � 1

"ef

� �
Δ~mj j ~E

 

 cos q; ð13Þ

where hΔνobs is the spectral shift, θ – the angle between $~m
and E vectors and εef is a microscopic analog of dielectric
constant (electric screening).

To achieve the optimal sensitivity of the dye to the
dipole potential, a probe should exhibit two properties:

– substantial change of its dipole moment ($~m) upon
electronic excitation, i.e. a substantial redistribution of
the electronic charge density,

– the probe should be located in nonpolar environment
(εef in the range of units) and oriented parallel or anti-
parallel to the electric field (θ=0 or 180o).

Styryl dyes with electron-donor and electron-acceptor
substituent at the opposite ends of the rod-shaped conju-
gated electronic systems are among the best known
electrochromic dyes (Fig. 6). They exhibit strong excited
state redistribution of the electronic charge that can be
modulated by the electric field. For example, the 4-
dialkylamino-3HFs are characterized by significant excited-
state charge transfer occurring from its 4-dialkylamino to the
4-carbonyl group. In bio-membranes, the parallel orientation
between the probe dipole and the dipole potential
gradient can be achieved by design, in which probe
charged groups are anchored to the lipid polar regions,
and the rod-like chromophore is oriented perpendicular
to the surface of the bilayer. Ideally the probe should be
located at the maximal electric field gradient; i.e. on the
level of the phospholipid carbonyl groups [154]. The dye
penetration depth can be controlled by the hydrophobic-
hydrophilic balance of the probe molecule, as illustrated
by 3HF (3-hydroxyflavone) derivatives, where the posi-
tively charged anchor is not a part of the chromophore,
and therefore the connecting spacer may be of a variable
length. Probes with the opposite orientations of their dipole
moments were designed. Their application in comparative
studies may exclude spectroscopic effects which do not
depend on probe dipole moment orientation, such as polarity
or viscosity [132, 154].

In order to quantify the spectral shifts, ratiometric
methods were designed, i.e. they determine the ratio, R,
of the fluorescence intensities at two excitation wave-
lengths at fixed emission wavelength. A decrease in R thus
represents a decrease in the dipole potential and, corre-
spondingly, an increase in R represents an increase in the
dipole potential [48]. Styrylpyridinium dyes like di-8-
ANEPPS allow ratiometric recording of YD, if the sample
can be excited with two different wavelengths. When lipid
vesicles or biomembrane suspensions are used, as exper-
imental systems, this possibility is easily provided by
common spectrofluorimeters. In contrast, for microscopic
studies of cells it would be more convenient to apply dyes
with a ratiometric response in emission that could be
adapted for multi-color imaging microscopes. Moreover,
ratiometric measurements in emission eliminate distor-
tions of data caused by photobleaching, variations in the
probe loading and instrumental factors such as light source

Fig. 5 Examples of two membrane dipole potential sensitive dyes: (a)
RH 421 and (b) di-8-ANEPPS
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stability. In this context, new fluorescent probes sensitive
to the dipole potential were designed by using 3-
hydroxyflavone (3-HF) derivatives. They exhibit two
well-separated emission bands due to the presence of
two forms in the excited state resulting from an excited
state intra-molecular proton transfer [155]. The chemical
structure and membrane location of 3-HF dyes is shown
on Fig. 6.

Results from ratiometric and pK - alteration methods
established that the value of the dipole potential
decreases with increasing lipid chain saturation and, in
the case of unsaturated lipids, with increasing length of
the hydrocarbon chains. Both of these affect the spacing
between headgroups, therefore modifying the dipole
potential value [156, 157]. Dipole potential sensitive dyes
were also used to investigate the effect of amphiphilic
peptides and proteins on the dipole potential of lipid
vesicles [61, 162–165], and to detect changes in local
electric field associated with conformational changes of
ion-translocating membrane proteins [63, 64]. A signifi-
cant advantage of the ratiometric dyes over other methods
is the possibility of using them to spatially resolve
differences in the dipole potential over the surface of cells
[153].

The dipole potential can be also measured with a
relocation of a fluorescent dye attached to the lipid
molecule [64]. When the DPPC bilayer was labeled with
two fluorescent NBD moieties, covalently attached to the to
the headgroup and to the acyl chain, both probes were
sensitive to the dipole potential changes induced by the
presence of phloretin and 6-ketocholestanol (6-KC) [154].
It is claimed that the two probes are detecting the dipole
potential by the correlation between their fluorescence

excitation shifts and the lipid packing density [157]. This
approach is not widely used since the fluorescence change
in this case intentionally depends on a combination of two
effects; the dye location and the dipole potential change,
which cannot be separated easily.

The R-value can be measured with up to 1% accuracy,
so the effects of surface-active substances and the lipid
structural changes on the dipole potential can be easily
resolved. Unfortunately, the absolute determination of the
dipole potential value by this method still relays on
calibration with methods, which are considerably less
accurate than the fluorescence measurements themselves
[38, 43, 50, 55]. In principle, the calibration of the dyes
might be possible by theoretical means, if the fluorescence
excitation spectrum of the dye could be quantum mechan-
ically calculated, the site and the orientation of the dye in
the membrane were accurately known and the influence of
the local field strength on the dye in the membrane could
be determined [153]. The other approach used to calibrate
the fluorescence measurements is the application of
molecules known to modify the dipole potential, i.e.
phloretin—the compound strongly reducing the dipole
potential and sterols, ether phospholipids and especially 6-
ketocholestanol (6-KC) which increase the dipole poten-
tial [72, 166]. Comparing the R values with YD values,
obtained from kinetic measurements of hydrophobic ion
transport across lipid bilayers, at different concentrations
of phloretin and 6-KC [152], it was found that they are
linearly correlated, i.e. a change of R of 0.8 corresponds to
a change in YD of about 100 mV [48, 156]. Similarly,
comparison of the R-values with packing densities,
expressed as a surface area per lipid molecule (A),
obtained with X-ray crystallography, for a number of

Fig. 6 Structure and estimated locations of F4N1, F8N1S and di-8-ANEPPS in a PC layer
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different lipids yielded an approximately linear correla-
tion. This is consistent with the Helmholtz equation:

<d ¼ m?
A"0"

; ð14Þ

where μ⊥ is the average component of the lipid molecular
dipole moment, including membrane-associated water
molecules perpendicular to the plane of the membrane,
εo is the permittivity of free space, and ε is the local
dielectric constant [51].

When measuring dipole potential using fluorescent
dyes, it is necessary to ensure that they are not sensitive
to any other changes in the membrane physical proper-
ties. It has been shown that the membrane order in
particular affects the fluorescence of membrane-bound
RH421 and di-8-ANEPPS [153]. Sensitivity of the probes
to the membrane order depends on the lipid used and on
the emission wavelength chosen for the measurement. The
origin of the fluidity-induced wavelength shifts of the
probes can be attributed to the processes in the excited
state. This could involve the conformational change of the
dye molecular structure and a simultaneous reorganization
of the dye solvatation shell. The effect can by completely
excluded by measuring the fluorescence emission on the
long wavelength red edge of the spectrum. The average
fluorescence lifetime of red-edge emission is significantly
longer than that on the blue edge, e.g. for RH421 in
DMPC vesicles lifetime increases from 0.6 ns at 569 nm
to 1.9 ns at 715 nm [157].

In addition, the probe can affect the outcome of the
experiment by itself. In order to sense the electric field
strength within the membrane the fluorophore must be
charged. Therefore, the influence of the dyes on the intra-
membrane field strength cannot be avoided. It has been
shown that the binding of RH421 to the lipid bilayer
induces an increase in the positive dipole potential and in
the rate constant of hydrophobic anion translocation
through the membrane, due to the positive charge on its
chromophore [135]. Consistently with these results, it was
found that the increase in the surface density of RH421 and
di-8-ANEPPS in DMPC vesicles causes the increase in the
R-value,which can be related to the increase in the dipole
potential. Titrations of RH421 and di-8-ANEPPS with lipid
vesicles showed, however, that the dye-induced shift of the
fluorescence excitation spectrum become negligible at a
molar ratio of lipid to dye of > 200 [157].

The determination of the trans-membrane potential

Due to its importance, the trans-membrane potential has
been a subject of intense research [19, 21, 73, 87].
Experimental methodologies were developed but most of

them were designed for dedicated experimental models,
therefore limiting the scope of their applications. By
introducing fluorescence techniques to the common phys-
iological and biophysical methods, experimental possibili-
ties expanded enormously including both: studies on model
and life systems. It was possible to monitor the kinetics of
chemically and/or physically induced processes on excit-
able membranes [32, 87], to measure large cell populations
with Fluorescence Assisted Cell Sorter (FACS) or Coultier-
type counters [167–169], and even follow single cell events
using various types of fluorescence microscopes [86, 89,
90, 111, 170, 171]. In addition, the combination of the
fluorescence microscopy with single cell handling techni-
ques opened new era in cell physiology studies [172–175]
and made cell-based HTS techniques feasible [176–178].

The most popular fluorescent dyes used as trans-
membrane potential probes, classified according to their
chemical structure, include rhodamines [179–181], cya-
nines [182, 183], merocyanines [184] and oxonols [185].
From the functional point of view, they can be divided into
fast and slow responding probes. Detection of the trans-
membrane potential with slow responding probes is based
on the molecular processes whereas a fast responding
probes are based on the electronic phenomena [87, 132].

Operation of slow responding probes is based on their
membrane binding and subsequent trans-membrane redis-
tribution following a trans-membrane potential. Slow
responding dyes, like other permeable ions, move across
membranes until they reach electrochemical equilibrium.
Their response time is counted in seconds or even minutes.
Therefore, those probes are suitable for detecting changes
in average membrane potentials of non-excitable cells
caused by respiratory activity, ion channel permeability,
drugs, to name a few. Their concentration gradient between
both sides of the membrane obeys the Nernst equation
[186, 187]:

$f ¼ RT ln
C1

C2
; ð15Þ

Therefore, the accumulation of the dye on one side of the
membrane reflects hyperpolarization, while its concentra-
tion decrease will reflect depolarization. The dye redistri-
bution is visualized by fluorescence changes, which depend
on its local concentration, i.e. self-quenching, or aggrega-
tion, to name a few.

Rhodamine-123 (R123), an example of the self-
quenching dye, is the first dye to be used and remains
one of the most popular in tracking mitochondrial mem-
brane potential changes (Fig. 7) [188]. The advantage of
using R123 as an indicator of membrane potential include
its availability, high sensitivity (high quantum yield),
specificity (against other environmental changes), non-
invasiveness, and low interference with relevant metabolic
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processes. It was shown that the R123 fluorescence
spectrum shifts to the red in response to mitochondrial
energization. There is also empirical relationship between
fluorescence intensity change and the membrane potential
showing that the method may be qualitative [179]. The
redistribution of R-123 in response to the membrane
potential is followed by R-123 diminished fluorescence
due to the self-quenching and spectral red shift. Therefore
the two effects can be complementary applied in experi-
mental protocols. In addition, the experiments can be
carried out in the dynamic and static modes. The former
is preferred if the availability of samples is not limited and
if analysis of more than one factor on the same sample has
to be assayed. The latter is preferred when the amount of
samples is scarce and/or changes of the trans-membrane
potential, induced by single effectors, are compared
between different cell samples.

The relation between R123 fluorescence intensity, probe
concentration and the trans-membrane potential has the
following properties [189]:

1. The intensity of R123 fluorescence has the maximum at
R123 concentration of 50 μM, and decreases to zero at
higher concentrations due to the self-quenching.

2. The measured fluorescence intensity and the membrane
potential are related by a non-linear calibration curve.
The previously published and widely used empirical
linear calibration curve is valid only over limited range
of the potentials (approximately from 80 mV to
180 mV).

3. The shape of the calibration curve is sensitive to the
details of the experimental protocol, including total

concentration of the dye, the concentration of lipid in
suspension, etc.

4. The predicted time course of the membrane potential
changes in response to the perturbation (such as the
addition of ADP to the respiration buffer) significantly
differ from the observed transient in fluorescence intensity
due to the slow response of R123 fluorescence (about 6 s).

5. Rhodamine is readily sequestered by cells or organelles
and subsequently washed out of the cells once
membrane potential is even transiently lost.

6. The rhodamine ester derivatives, tethraethyl-rhodamine
ester, allow the cell loading with controlled amount of
the dye available for mitochondria labeling [187].

Oxanols (Fig. 8) and selected cyanine dyes (Fig. 9) are
another charged fluorescent dyes sensitive to the trans-
membrane potential via redistribution across the membrane
and accumulation on the membrane side with positive or
negative potential built up, respectively [185, 190, 191].
The dye redistribution, similarly to rhodamine dyes, will
follow the Nernst relation. (Eq. 15)

It has to be remembered that the local dye concentration
can be biased by the membrane surface potential according
to the Boltzman relation:

Cs ¼ CB exp
�ze<SðzÞ

kT

� �
; ð16Þ

where the local charged dye concentration (CS) depends
both on the bulk concentration (CB) and the local surface
electrostatic potential, Ys(z).

The dye binding is accompanied by changes in its
fluorescence properties. Oxonol V is often employed but it

Fig. 7 Rhodamine dyes

Fig. 8 Chemical structure of oxanol and its derivatives
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exhibits pronounced fluorescence quenching at high con-
centrations. Intensity-independent methods are more con-
venient for quantitative measurements since they increase
the accuracy of the results. The intensity-based methods are
limited by variability in dye and/or vesicle concentrations
or photobleaching. Oxonols upon binding to the membrane
exhibit 20 nm shift of emission spectrum towards longer
wavelengths. Tracking the emission spectrum position with
a ratiometric approach can thus monitor the trans-
membrane potential. Namely, fluorescence intensities are
measured at two separate wavelengths, either at excitation
or emission, corresponding to the fluorescence bands of
free and bound dye. Then the ratio of intensities, related
directly to the spectrum position, is calculated, [192–195].

In order to enhance the method sensitivity additional
modifications were introduced. For example, an optical
voltage sensor was proposed which consists of a
membrane-bound fluorophore and an oxonol dye. The dye
partitions into the membrane and distributes between the
inner and the outer leaflet of the membrane as a function of
the membrane potential. The two dyes are selected in such a
way that the fluorescence resonance energy transfer is
possible. The alteration in the local surface oxanol
concentration results in changes of the energy transfer
efficiency. In this system, fluorescence changes of up to
34% per 100 mV were achieved [196–198].

There is a serious intrinsic difficulty associated with the
application of charged membrane permeable dyes; they
increase the capacitive load on the membrane. Consequently,
the charging of the membrane is seen as a slowing down of the
rising trans-membrane potential and a decrease of the resting
potential. The importance of this effect was demonstrated for
excitable cells. During the onset of the membrane action

potential, the current is facilitated, mainly, by the opening of
the sodium channels (INa). Therefore, the change in mem-
brane potential is approximately given by

dV

dt
¼ INa

C
; ð17Þ

and since INa remains approximately constant, an increase in
C reduces dV

dt so that the trans-membrane voltage develops
more slowly. A further increase of the capacitive load results
in complete abolition of the action potential.

Fast dyes, which monitor local electrostatic potential by
adjusting their spacial valance electron arrangement in the
fluorophore, reveal changes in the probe absorption and/or
emission spectrum (electrochromism) [133, 199–202]. Those
types of dyes are capable to monitor trans-membrane
potential in the millisecond range. Examples of fast dyes
are merocyanine 540, RH421, di-4-ANEPPS and di-8-
ANEPPS. The spectral shift associated with a change in the
membrane potential permits to develop a dual wavelength
ratiometric approach [172, 201, 203]. It was shown that such
dyes, as exemplified by the ANEP (aminonaphthethenyl-
pyridinium), exhibit consistently responses in a variety of
tissue, cell and model membrane systems [133, 172, 201,
203]. Initially, the dyes with the excitation spectrum
sensitive to the local electric potential were developed
[133, 199]. The ratio “R” is calculated from the part of the
excitation spectrum where the total fluorescence is low
and changes steeply with the wavelength. Using these
fluorescence ratios the trans-membrane potential can be
calibrated and measured.

When the relative changes in the membrane potential are
measured both slow and fast fluorescent dyes can be used
without additional data treatment. However, if the absolute

Fig. 9 Chemical structures of selected cationic cyanine dyes
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value of the potential is needed the appropriate calibration
procedure is required. Specifically, the correlation of the
fluorescent dye spectral properties needs to be calibrated
against well-defined model system with predetermined
membrane potential values. Ideally, the observed fluores-
cence changes at a given membrane potential, irrespective
of its origin, should be reproducible and independent on the
dye quantity [204]. The trans-membrane potential is usually
generated in the lipid bilayer model systems by establishing
a trans-membrane K+ concentration difference in the
presence of valinomycin resulting in the Nernst potential
built up. For such system, the calculated ΔY is correlated
with the dye fluorescent intensities ratio (R) [14, 186, 205–
208]. Certain caution is needed when using the procedure
since the calculations of potential according to the Nernst
equation might be incorrect (being underestimated due to
the transient nature of the diffusion potentials). Moreover
the signal changes induced by diffusion potentials may be
influenced by the formation of lipid-soluble complexes
between the ionophore (valinomycin), the permeant ion
(K+), and the probe. This calibration method was later
modified to quantify ΔY measurements in proteoliposomes
with reconstituted H+-ATPase from the plasma membrane
of S. pombe [209].

Summary and perspectives

The HTS approaches are becoming widely used by
pharmacological industry, in environmental studies and
biological sciences. The selection of biologically relevant
parameters and their subsequent evaluation using model
systems is now a common strategy. Whereas, partition
coefficient, solubility, membrane permeability and cellular
toxicity are commonly evaluated the effect of active
compounds on electrical properties of the biological
systems are seldom used in large-scale studies. The
enormous advancement of fluorescence techniques enabled
development of the new membrane electrostatic potential
tests and their HTS application. The electrical properties of
membranes can be now efficiently and reliably measured
and/or visualized. The first trans-membrane potential
determination was performed on mitochondria using cat-
ionic rhodamine 123 [188]. The methyl and ethyl esters of
tetramethylrhodamine (TMRM and TMRE) are currently
the preferred dyes for the determination of membrane
potential in cells by quantitative imaging [20, 170, 187].
They are membrane permeable and their strong fluores-
cence implies their application at low concentrations, thus
avoiding the aggregation and the local alterations in the
membrane potential. As their fluorescence is relatively
insensitive to the environment, spatially resolved fluores-
cence of TMRM and TMRE presents an unbiased profile of

their trans-membrane distribution that can be related
directly to the membrane potential via the Nernst equation
[20]. There are now commercially available products
designed for electric activity evaluation in living cells
(Axiom Biotechnologies Inc, USA). In this assay the
resonance energy transfer between two dyes is used as
indication of the modulation of the cell membrane potential.
A number of other applications as well as further improve-
ments of this technique are outlined in UK patent no.
UKPA. 9406464.9. Fluorescence methods are now com-
bined with electrophysiological tool-kids providing com-
prehensive excitable system characterization [89, 210]. It is
possible now to detect a broad range of cellular effects
using dedicated fluorescent probes including for example;
changes in the mitochondrial and cytoplasmic membrane
potentials occurring in the early stages of receptor-mediated
activation processes [211, 212], membrane potential-related
changes indicating bacterial injury [213], shear stress
effects in endothelial cells [214] or studies on mitochondrial
functionality during apoptosis [215]. The combination of
fluorescence, molecular biology methods, and genetic
engineering allows designing cellular models, which enable
single molecule studies on membrane channels [85, 86,
171, 216] or to combine them with independently measured
intracellular parameters [217–219]. Genetically encoded
probes are now used for membrane potential determination
[220, 221] or even to study neural network systems [222].
Site-specific fluorescence measurements of ion channels
under voltage-controlled conditions allowed direct tracking
of the conformational change of the voltage sensor in
expression systems ranging from oocytes [223–226] to
various cells [173, 227, 228]. By introducing cysteine
residues in the specified locations of the channel protein,
it is possible to attach fluorescent dyes at predetermined
sites and thus report local changes in the electrical field
strength and correlate it with channel functioning [229,
230]. The variety of new optical methods emerges for
studies of membrane potential using spectroscopy, micro-
scopic image analysis [231–234], non-linear optical
measurements [235, 236] or second-harmonic generation
microscopy action potential recording [88, 237, 238]. The
combination of improved experimental data acquisition
and handling, combined with molecular dynamic simu-
lations, introduces new quality to understanding and
subsequent applications of knowledge on electrical prop-
erties of biological systems [132].

All those developments allow for the rational design of a
comprehensive fluorescence platform, based on model
supramolecular aggregates, model membranes or even
whole cells, for the characterization of biological systems
[239–244]. Moreover, the miniaturization and the applica-
tion of automated routines will make the massive scale
measurements of membrane potentials possible [245–248].
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